Feedback on the EU Circular Economy Act

Input from the Rethink Plastic Alliance to the European Commission's upcoming proposal for an EU Circular Economy Act

November 2025

Table of Contents

1
2
3
mers in Plastics5
6
for Circular Goods

About Rethink Plastic

The Rethink Plastic Alliance is a coalition of leading European NGOs advocating for ambitious EU policies to tackle the growing crisis of plastic pollution. It brings together the Center for International Environmental Law (CIEL), ClientEarth, the Environmental Investigation Agency (EIA), the European Environment Bureau (EEB), the European Environmental Citizen's Organisation for Standardisation (ECOS), Greenpeace, Seas At Risk, Surfrider Foundation Europe, and Zero Waste Europe (ZWE). Together, these organisations represent thousands of active groups, supporters and citizens in every EU member State working towards a future free from plastic pollution.

Summary

Using fewer resources is a pressing issue of our times, particularly given the <u>Planetary Health Check 2025</u> worryingly concludes that seven out of nine Planetary Boundaries have been breached.¹ In the EU, both material use and waste generation show no signs of a significant reduction and it is clear that ambitious measures are required to remedy this. The upcoming Circular Economy Act (CE Act) therefore presents a major opportunity to better use our planet's finite resources and protect human health by transitioning to a low material intensity, less wasteful, and toxic-free circular economy.

The Rethink Plastic Alliance is advocating for a CE Act that truly rises to the challenge and reflects the urgent need to reduce, reuse and recycle materials. Concerningly, the Call for Evidence suggests that the Commission's main focus is on downstream measures. While we acknowledge and support the need to improve recycling in the EU, we are calling for a CE Act that accurately reflects the waste hierarchy and therefore also includes strong measures on waste prevention and reuse, while ensuring material loops are toxic-free. In line with this, the Rethink Plastic Alliance urges the Commission to:

- Use a dual legal basis: Establishing a dual legal basis under both environmental and Single Market provisions of the EU Treaty (Article 114 and 192 TFEU) for the CE Act will preserve environmental integrity while improving the coherency of the EU Single Market.
- Introduce binding EU-wide material footprint targets: The CE Act should be used as an opportunity to significantly decrease the EU's material and consumption footprints to bring them into planetary boundaries as soon as possible.
- Reduce the number of polymers in plastic: The number of poorly recyclable and harmful
 polymers has substantially multiplied and this is fundamentally unsustainable. We
 therefore call for a reduction of polymers used in virgin plastics with the aim of phasing
 out those that are most harmful and those that impede recycling and reuse.
- Mandate EPR to fund prevention, repair and reuse: EPR is a key source of funding for
 waste management in the EU but it fails to support more resource-efficient measures
 such as waste prevention, reuse, repair, refurbishment, and remanufacturing. The CE Act
 should reform EPR schemes so that they effectively promote the scaling-up of circular
 processes beyond waste management, including the establishment and development of
 reuse systems.
- Leverage public procurement as a driver for reuse: The CE Act must deliver on setting mandatory and impactful criteria for public procurement of circular goods. In particular, it should be done in a way that creates predictable demand for reuse.

¹ Potsdam Institute for Climate Impact Research (PIK), *Planetary Health Check* 2025, (2025).

- Restrict substances of concern in plastic: The CE Act must promote clean manufacturing and toxic-free material cycles. This includes ensuring that all chemicals in plastic products are used more safely and sustainably, minimising and substituting chemicals that have a chronic effect on human health and the environment, and phasing out the most harmful ones for non-essential societal use.
- Ensure high-quality recycling: The CE Act should promote the redesign of plastic towards more mono-materials and safer chemicals so that it can be mechanically recycled in a way that delivers high-quality recyclates. The two main technologies promoted under the undefined concept of "chemical recycling", namely pyrolysis and gasification, should not be considered as recycling technologies. Rather, these inefficient and highly polluting technologies should be considered as chemical recovery and they should not be promoted under the CE Act as a sustainable solution to the plastic waste crisis.
- Tackle illegal exports of WEEE: The implementation of export bans needs to be improved and sufficient resources for enforcement in both exporting and importing countries should be ensured to address this problem, including inspections for stronger border control.
- Develop well-designed End-of-Waste criteria: We are in favour of the EU developing EU-wide End-of-Waste (EoW) criteria that ensure recycled materials are safe, traceable, and used within a closed regulatory loop. It is crucial that EoW criteria developed under the CE Act are well-designed so that they provide a single standard for recyclates quality, ensure alignment with chemicals and product legislation, and prevent circumvention of waste-trade controls.

Legal Basis

The CE Act should have a dual legal basis. The Call for Evidence indicates the intention to use Article 114 TFEU as the legal basis for this Act to adopt measures that strengthen harmonisation, ensuring a level playing field within the Single Market. However, as the CE Act is likely to primarily address waste, this legal basis should be complemented by Article 192 TFEU to ensure a high level of environmental protection. This dual legal basis will also be warranted given the clear environmental nature of several of the measures under consideration and of the existing legislative pieces being revised. In short, establishing a dual legal basis under both environmental and Single Market provisions of the EU Treaty (Article 114 and 192 TFEU) will preserve environmental integrity while improving the coherency of the EU Single Market.

Strategic Use of Resources

Material Footprint Targets

The recent EEA assessment on the <u>State of Europe's Environment</u> recommended reducing the current unsustainable levels of resource use through the introduction of resource use targets. Earlier in 2025, the Co-Chairs of the International Resource Panel (IRP) called for 21st Century Global Materials Stewardship through **science-based material use targets**².

Binding EU-wide material footprint targets must therefore become part of the CE Act. Based on scientific insights³, we recommend a target in the range of 5 - 8 tonnes per capita by 2050. Such a target would provide guidance for EU Member States to establish caps on material use and adopt product-specific benchmarks.

It should be stressed that there is political support at the national and local level for resource use reduction. Countries like Germany, Austria and the Netherlands have already adopted national resource use reduction targets. The Circular Cities Frontrunners support legally binding material footprint reduction targets at the EU level, with sub-targets for specific categories of materials⁴. In June 2024, EU Member States, in the Environment Council Conclusions on the review of the 8th Environmental Action Programme, explicitly called on the Commission to establish "an EU long-term objective for sustainable resource use" and to assess "the setting of ambitious (...) targets to keep material and consumption footprints within the planetary boundaries and their translation to the national level."⁵ The CE Act must deliver on this mandate.

To effectively reduce resource use, a wide range of policy instruments is needed. The IRP's 2024 Global Outlook Report stressed that urgent action is needed to roll out **appropriate financial**, **trade and economic incentives**. Its Call to Action emphasized the need to redirect harmful subsidies and introduce fiscal measures to **internalise environmental and social costs in material prices**⁶. The Bruegel Institute echoes this in its policy brief on the European Circular Single Market: "currently, resources are used inefficiently because market and government failures create disincentives and barriers to firms and individuals (...). The most prominent failure is the artificial cheapness of raw materials because the environmental and human costs of extraction are not included in their prices."⁷

As a priority, the EU must lead Member States to reduce the resource intensity of food, mobility, housing and energy systems by **combining resource efficiency and demand-side measures**. The forthcoming CE Act should, in particular, be adopted for products containing plastics in

² International Resource Panel (IRP), <u>Global Materials Stewardship</u>, (2025).

³ ECOS, <u>Sustainable Resource Management in the EU</u>, (2024), page 5.

⁴ Circular Cities Declaration, *The rise of circular cities in Europe*, (2024).

⁵ Council of the European Union, <u>The 8th Environmental Action Programme Mid-term Review - The way forward to a green and just transition for a sustainable Europe</u>, (2024).

⁶ United Nations Environment Programme, <u>Global Resources Outlook 2024</u>, (2024).

⁷ Bruegel, A European circular single market for economic security and competitiveness, (2024).

order to promote their demand moderation, reuse, repair, remanufacturing and recycling. The EU should seize the economic opportunities to be gained through these strategies: Reducing the EU's material footprint is the most effective way to de-risk the European economy from import dependencies and reduce costs, while creating new jobs in labour-intensive circular sectors.

In view of secondary material use, a price signal on carbon emissions - and indeed on other impact categories - of primary raw material production could be a key lever to ensure better waste management, reuse, repair, recycling, and improved product design. As a result, demand for secondary materials would increase, pressure on virgin resource extraction would be reduced, and circularity would be boosted. This can be measured as the circular material use rate: – 24% CMUR by 2030 was defined as a KPI in the Clean Industry Deal⁸.

Reduce the Number of Polymers in Plastics

In light of the multiplication of unrecyclable (or poorly recyclable) and toxic polymers over the past decades, we call for (1) registration of polymers under REACH, and (2) a reduction of polymers used in virgin plastics with the aim of phasing out those that are most harmful and those that impede product recycling and reuse. A good example of this is packaging, where mixed or multilayered materials are increasingly being used, making the final products impossible to recycle. A similar issue is found in fisheries where fishing nets and traps are often composed of mixed or different polymers, often very hard or impossible to recycle, making the recycling of nets either extremely costly or completely impossible.

There are a number of problematic plastics which should be phased out or the use of which should be minimized in (notably consumer) products, in order to prioritise better quality, less toxic and more durable options, such as PVC, PS, PC and LDPE. Among several polymer types tested for their climate impact, Low Density Polyethylene (LDPE) released the highest concentrations of methane and of ethylene when exposed to solar radiation, according to the study published by Seas At Risk in 2021. Polypropylene (PP) is also problematic in that it is prone to degrading in direct sunlight.

Toxicity in plastics is also critical to address in order to make reuse and recycling easier and healthier for product users. Toxic recycled plastics should never be used for health sensitive applications such as kitchenware or children toys. It is also counterproductive that manufacturers of geotextiles increase the quantities of finishing treatments and chemical additives such as UV stabilisers to try and delay the degradation of their products when used in the open environment. The number of additives used in plastic should therefore be capped (in parallel with ensuring their safety) so that plastic recycling does not contribute to fostering more toxic products.

⁸ European Commission, *Clean Industrial Deal*, (2025).

⁹ Seas at Risk, Microplastics in the marine environment: Sources, Impacts & Recommendations, (2021).

Promoting Reuse and Repair

In order to transition to a truly circular economy, reuse, repair, and material efficiency must be prioritised. The Rethink Plastic Alliance **strongly advocates for the CE Act to promote reuse and repair** and believes that this can be advanced by leveraging two key instruments: EPR reform and public procurement criteria.

Extended Producer Responsibility

Extended Producer Responsibility (EPR) is a key source of funding for the establishment and operation of waste management infrastructure across the EU. However, it currently fails to support more resource-efficient measures such as waste prevention, reuse, repair, refurbishment, and remanufacturing. In their current form, EPR schemes provide little to no funding for scaling-up circular processes beyond waste management. They are also not designed to address the root causes of the waste crisis, due to how they are established under EU and national legislation.

Packaging waste offers a particularly clear illustration of these shortcomings: Despite EPR being widely implemented across the EU, packaging waste generated per capita has increased by 20% over the past two decades, while recycling rates have stagnated and waste generation continues to grow. Single-use packaging remains the default and cheaper option, with environmental, social, and health burdens externalised onto local governments and taxpayers. Meanwhile, upstream solutions, such as reuse systems, struggle to scale up as economic incentives favour waste management over waste prevention. Other EPR-covered waste streams, such as waste from electrical and electronic equipment and lightweight batteries exhibit a similar trend: Waste generation grows faster than collection and recycling rates. The case of cigarette butts further illustrates the need to reform EPR schemes. Current cost coverage by producers fails to reflect the true societal burden of this pollution, while producer participation in EPR governance contradicts international rules. In addition, inconsistencies between the financial and operational responsibilities for awareness-raising under the Single Use Plastics Directive (SUPD) have led, in several Member States, to Producer Responsibility Organisations taking charge of public campaigns in place of national authorities, undermining the polluter-pays principle. This demonstrates the pressing need to reform EPR, turning it into a stronger instrument for sustainable resource use, actively promoting reuse, repair, and prevention through dedicated funding. While simplification and harmonisation of EPR schemes across the EU is a welcome goal, it will remain insufficient unless accompanied by a fundamental restructuring of EPR regimes to make them true drivers of circularity.

The CE Act offers the opportunity to strengthen EPR, ensuring it prioritises waste prevention, enables reuse and repair, and holds producers accountable for the full lifecycle of their products. The Rethink Plastic Alliance encourages the Commission to:

- Redefine EPR cost coverage under the Waste Framework Directive (WFD): EPR fees must cover the full costs of a product's end-of-life management, including treatment of unsorted waste and litter clean-up (for all product categories, not only some single-use plastics packaging formats). Currently, a major barrier preventing EPR from becoming a genuine driver of circularity is Article 8 of the Waste Framework Directive, which excessively restricts EPR fees to a narrowly defined closed list of waste management costs. The costs which are currently not covered by EPR schemes fall on municipalities (e.g. costs of cleaning-up waste that is littered or illegally dumped in public spaces) and therefore on all taxpavers, including those who did not consume or discard the product. Strengthening cost coverage would reduce pressure on local budgets and ensure a more complete implementation of the Polluter Pays Principle. It should also be noted that the level of cost coverage, and thus the size of EPR fees, directly affects their steering power: EPR fees typically account for less than 2% of product costs, and in some cases as little as 0.1%. This provides insufficient incentives for producers to improve product design for reuse, repair, or recyclability, limiting the practical impact of eco-modulation of EPR fees.
- Mandate EPR to fund prevention, repair and reuse and clearly define cost-coverage for these activities to delineate the limits of producer responsibility: EPR systems currently fail to contribute to financing more resource-efficient options such as waste prevention, reuse, repair, refurbishment, or remanufacturing. The absence of specific prevention and reuse targets (except for packaging waste) further aggravates this. While the EU Packaging and Packaging Waste Regulation (PPWR) requires that part of the EPR budget support prevention and reuse measures, it does not mandate a meaningful funding share. EPR schemes should be required to financially support waste prevention, reuse, and repair, linked to the achievement of EU sectoral targets with dedicated funding and with the amount necessary to achieve the relevant policy goals and targets. For example, dedicated repair funds in electronics and textiles could lower repair costs compared with buying new products, while packaging EPR could support both the collection of single-use packaging and the development and establishment of reuse systems (e.g. for takeaway packaging). Where sectoral targets for waste prevention, reuse, and repair are not yet established, they should be introduced as a priority, and EPR schemes should be required to contribute to their achievement through dedicated and transparent funding mechanisms.
- Improve governance, transparency, and accountability of Producer Responsibility Organisations: The EU should embed stronger accountability and transparency requirements within PRO/EPR governance to ensure that systems reflect the realities of those most affected by EPR implementation. EPR governance reviews should focus not only on harmonisation and performance oversight but also, in particular where they address upstream measures, on ensuring the meaningful participation of municipalities, social enterprises, reuse organisations, and recyclers in the design of the schemes and

- in decision-making. Simplification and digitalisation of reporting would enhance public oversight, reduce fraud, and mitigate risks of misreporting.
- Investigate whether EPR schemes could include a "fee transfer mechanism" to finance the end-of-life treatment of second-hand products exported outside the EU: EPR schemes could incorporate a transboundary fee mechanism to finance the end-of-life treatment of second-hand products when these are shipped outside the EU. This could help to establish global frameworks for responsible waste management and ensure that producers' financial responsibility follows the product beyond EU borders, covering the actual end-of-life costs borne by importing countries. At the same time, strong guardrails would need to be established to prevent transboundary fee transfer from becoming a perverse incentive for importers to increase imports.

Public Procurement Criteria for Circular Goods

Establishing mandatory Green Public Procurement criteria will be crucial to create demand for safer, environmentally responsible goods, services and infrastructures, and to enable public authorities to drive decarbonisation and detoxification by prioritising safe and sustainable solutions across sectors. As public procurement represents 14% of GDP, serious economies of scale could be achieved through a shift to Green Public Procurement. However, currently too many public tenders are still awarded based on the lowest price, without taking any sustainability considerations into account. The European Parliament notes in its own-initiative report on public procurement that "awarding public contracts based solely on the lowest price might encourage unfair competition and that this is at the expense of quality, sustainability and social standards" and goes on to recommend that the price-quality ratio should be considered instead. Indeed, instead of rewarding the lowest price, public procurement needs to be used as a strategic tool to achieve the highest value for the public and local communities.

To this end, we encourage the Commission to use the revision of the Public Procurement Directive to create predictable demand for reuse. The ongoing revision of the Public Procurement Directive offers a timely opportunity to integrate reuse-based criteria in public tenders. Member States could be required to include minimum reuse content or service requirements for tenders in catering, healthcare, transport, and local authority procurement, for example.

-

¹⁰ European Parliament, *INI on Public Procurement*, (2025).

A Toxic-Free Circular Economy

Substances of Concern

The Rethink Plastic Alliance supports the aim of the Clean Industrial Deal "to foster a higher supply of high quality recyclates and stimulate demand for secondary materials and circular products". In order to develop and deploy sustainable circular products and to protect the environment and human health, in particular that of vulnerable groups, **EU policy must evolve and respond more rapidly and effectively to the challenges posed by substances of concern (as defined in the Ecodesign for Sustainable Product Regulation, EU 2024/1781), in plastics.**

Manufacture of synthetic chemicals and plastics is subject to few legal or policy constraints. Unlike pharmaceuticals, synthetic chemicals are brought to market with little prior assessment of their hazard and almost no post-marketing surveillance for longer-term adverse health effects. Chemicals in plastics are often not sufficiently considered in the overall strategy to prevent and mitigate the impacts of plastics on human health, the environment and the circular economy.

A 2025 comprehensive mapping of the chemical complexity of plastics pointed to 16,325 known plastic chemicals focussing on their properties, presence in plastic and hazards. It found that diverse chemicals serve a small set of functions, including 5,776 additives, 3,498 processing aids, 1,975 starting substances and 1,788 non-intentionally added substances. Using a hazard-based approach, scientists identified more than 4,200 chemicals of concern, which are persistent, bioaccumulative, mobile or toxic. They also determined 15 priority groups of chemicals, for which more than 40% of their members are of concern.

Most of the established harms to health associated with plastic use are due to chemicals of concern, including chemicals intentionally used in plastic manufacture, such as starting substances (e.g., monomers and catalysts), processing aids (e.g., lubricants), and additives (e.g., plasticisers, flame retardants, fillers, dyes, and stabilisers). Chemicals of concern also include non-intentionally-added substances, such as impurities, byproducts, contaminants, and degradation and transformation products. The Minderoo–Monaco Commission on Plastics and Human Health¹³, together with a recently launched independent, indicator-based global monitoring system called the Lancet Countdown on Health and Plastics¹⁴, emphasised the negative impacts from thousands of problematic chemicals that are incorporated into polymers to convey specific properties. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), and brominated flame retardants.

¹¹ European Commission, *Clean Industrial Deal*, (2025).

¹² Nature, Mapping the chemicals complexity of plastics, (2025).

¹³ Annals of Global Health, *The Minderoo-Monaco Commission on Plastics and Human Health*, (2023).

¹⁴Health Policy, *Lancet Countdown on health and plastics*, (2025).

Particularly worrying is the robust and rapidly accumulating evidence on the presence of these chemicals in our bodies¹⁵, and the effects of substances of concern used in plastic on children's health.¹⁶ The **need for actionable measures and measurable actions to reduce our overall exposure to substances of concern in plastics is becoming very urgent.**

The CE Act should therefore align with the actions promised by the Commission in the Chemicals Strategy for Sustainability. This includes ensuring that all chemicals in plastic products are used more safely and sustainably, promoting that chemicals that have a chronic effect on human health and the environment are minimised and substituted as far as possible, and phasing out the most harmful ones for non-essential societal use, in particular in consumer products.

Legacy Hazardous Chemicals

Regulatory actions on hazardous chemicals in plastic should first and foremost prioritise phasing out the most hazardous chemicals and minimising the presence of substances of concern in products.

These actions need to go hand-in-hand with increased investments in technologies to address the presence of legacy substances in waste streams, which could in turn allow the recycling of more waste, particularly from long-lasting products with the highest potential for circularity, such as textiles, furniture, electronics, construction and building. Sustainable innovations and technologies will have to be developed for this purpose.

Nevertheless, when safe reuse or recycling of any product containing hazardous legacy chemicals cannot be guaranteed, **such waste should be treated as hazardous**.

It is also crucial to start building as soon as possible an effective traceability of chemicals used in products (through e.g. Digital Product Passport), to enable recyclers in the future to tackle the issue of legacy substances. In this respect, we remind the Commission of its commitment under the 2020 Circular Economy Action Plan (COM(2020) 98) yet to be delivered:

"co-operate with industry to progressively develop harmonised systems to track and manage information on substances identified as being of very high concern and other relevant substances, in particular those with chronic effects, and substances posing technical problems for recovery operations present along supply chains, and identify those substances in waste, in synergy with measures under the sustainable products policy framework and with the ECHA Database on articles containing substances of very high concern".

¹⁵ HBM European Network, *The European Human Biomonitoring Dashboard*, (2022).

¹⁶ The Lancet Child & Adolescent Health, <u>The effects of plastic exposures on children's health and urgent opportunities for prevention</u>, (2025).

Recycling and Chemical Recycling

Recycling has a role to play in supporting the circularity of plastics. To ensure that recycling delivers meaningfully with high-quality recyclate, plastics need to be redesigned in the first place towards more monomaterials and a reduced amount of substances of concern. Indeed, plastic is one of the sectors which lacks trust in secondary materials due to the chemical concerns in recycled materials.¹⁷ Now, even more, we need to focus on the quality and safety of recycled materials for a sustainable circular economy.

Alongside the push for plastics' circularity, processes have been promoted to address the issue of plastic waste that is not recyclable under the concept of "chemical recycling" (also called "molecular recycling" or "advanced recycling"). There is currently no clear definition of what "chemical recycling" is. This umbrella term covers very different processes, which have different environmental impacts and efficiency rates.

Pyrolysis and gasification are the main technologies promoted under the concept of chemical recycling, which the Rethink Plastic Alliance does not consider to be recycling technologies but rather as recovery technologies. From a climate angle, it is worth mentioning that pyrolysis for plastic waste emits on average nine times more greenhouse gas emissions than mechanical recycling, and that under current conditions (i.e. low monomer yields and high energy/upgrading requirements), the negative environmental impact of pyrolysis and gasification can be between 10 to 100 times higher than that of virgin polymer production. Not only is the environmental impact a cause for concern, these processes are also highly inefficient: One industry estimate of the oil yield from pyrolysis of plastic waste is 22 %. The process using pyrolysis requires the use of a steam cracker to produce plastics but due to the chemical composition of pyrolysis oil, it needs to be highly diluted into a steam cracker with petroleum naphtha (99.9%). In other words, even in the best-case scenario, only 2% of the plastic waste fed into pyrolysis will actually make the round trip into the steamcracker, and at worst, less than 1% of plastic will be recycled. The Rethink Plastic Alliance therefore urges the Commission not to promote pyrolysis and gasification as solutions to the plastics waste crisis.

¹⁷ European Environmental Agency, <u>Investigating Europe's secondary raw material markets</u>, (2023).

¹⁸ ECOS, DUH, ZWE, <u>Chemical Recycling and Recovery - Recommendation to Categorise Thermal Decomposition of Plastic Waste to Molecular Level Feedstock as Chemical Recovery</u>, (2021)

¹⁹ Oekoinstitute, <u>Climate impact of pyrolysis of waste plastic packaging in comparison with reuse and mechanical recycling,</u> (2022).

²⁰ Uekert T., <u>Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics</u>, (2023).

²¹ EUWID, <u>Veolia executive questions the environmental benefit of chemical recycling for plastic waste,</u> <u>Recycling and Waste Management</u>, 8, (2022), page 3.

²² Rollinson A., <u>Leaky loop recycling: A technical correction on the quality of pyrolysis oil made from plastic waste</u>, (2023).

²³ Ibid.

When mandating recycled content targets in EU legislation, it is important to recognise differences in the way recycled content is calculated. Indeed, for recycled content targets to deliver meaningful circularity, it should be ensured that recycled content is actually in the final product. There are different chains of custody resulting in different levels of transparency and traceability. Chains of custody ensuring the highest level of traceability and transparency should be prioritised, i.e. segregation and controlled-blending models, when feasible. When the process does not enable the use of these chains of custody, the mass balance system could be used under specific rules (i.e. proportional allocation at the batch level) as this is the only way to ensure physical and chemical traceability along the value chain. If not done in this way, there is no certainty that recycled content is present in the final products, representing a risk of misleading claims towards consumers, as outlined by the Dutch Authority for Consumers and Markets²⁴. Additionally, it is important to recall that recycled content targets shall remain standalone targets and not be mixed with bio-based targets. Indeed, mixing both types of plastics would undermine the effectiveness of recycled content in supporting the recycling sector, and act as a disincentive to design for recycling.²⁵

E-Waste

Waste from Electrical and Electronic Equipment (WEEE) is often composed of plastics laced with metals and chemicals and its improper disposal therefore causes significant environmental damage. To reduce this rapidly growing waste stream, it is crucial that the CE Act includes stronger and binding measures to prevent waste and promote repair, reuse and proper collection.

Illegal exports of WEEE is a major challenge. To tackle this, the EU should improve the implementation of its export bans through strict requirements within the consent procedures defined under the Waste Shipment Regulation, OECD Decision, and Basel Convention. Ensuring sufficient resources for enforcement in both exporting and importing countries, including inspections for stronger border control, is a key measure to address this problem. In addition, uniform and binding test requirements for exporters and importers to distinguish between EEE and WEEE - currently not included in Article 23 or Annex VI of the EU WEEE Directive - are urgently needed, including functional requirements and tests for used EEEs.

The cost incurred by EEE/WEEE exported to third countries outside the EU should also be considered. The Commission should investigate whether EPR fees paid by producers in EU countries could be made available in third countries to finance the effective collection and treatment in those countries, as well as the remediation of environmental and social damage from environmentally unsound treatment of WEEE. This is also relevant for other product groups, such as plastic packaging, but so far it is not considered in any EPR system. To put it

²⁴ Authority for Consumers and Markets, <u>Going forward, Decathlon and H&M will provide better information about sustainability to consumers</u>, (2022).

²⁵ ZWE, <u>Using biobased plastic to meet the recycled content target for plastic packaging – a false "bonne idée"</u>, (2023).

simply: The EU delegates the waste management of products exported outside the EU to the receiving countries but keeps the fees that were set aside to financially support that process, thus placing an unfair burden on the waste management systems of receiving countries outside the EU, many of which may be less equipped to deal with highly polluting products, such as WEEE.

Effective and Enforceable End-of-Waste Criteria

The limited trust that we currently see in secondary raw materials (for many materials) impacts their marketability, prices, and eventually their use, thus hampering the transition towards circular economy. This is notably due to the lack of harmonised and clear regulatory frameworks, lack of stable markets and doubts over the quality of the secondary raw materials, including contamination that may prevent use in certain applications.²⁶

The Rethink Plastic Alliance supports the EU in developing EU-wide End-of-Waste (EoW) criteria, which would and should provide a single standard for recyclates quality, ensure alignment with chemicals and product legislation, and prevent circumvention of waste-trade controls. EU-wide EoW criteria would also strengthen coherence with other EU legislation, such as the Ecodesign for Sustainable Product Regulation and the Waste Shipment Regulation, ensuring that recycled materials are safe, traceable, and used within a closed regulatory loop.

End-of-waste and circularity-enhancing policies should be accompanied by policies that support overall resource-use reduction and safety, ensuring secondary materials are used safely and sustainably instead of virgin resources, rather than on top of existing levels of virgin resource used.

While providing an opportunity, EoW policy also presents significant risks of reducing protection, undermining waste trade legislation, and contributing to toxic loops and pollution, espe if the specific criteria for plastics are poorly designed. To support effective EoW policy in line with Article 6 of the Waste Framework Directive (WFD), the **Rethink Plastic Alliance recommends applying the following key principles and safeguards when developing EoW criteria:**

- Harmonise to protect: In line with the WFD, when developing EU-wide criteria, the European Commission shall take into account the criteria established by Member States and favour harmonisation to the top, i.e. following the most stringent approach, and ensure a high level of protection of the environment and human health.
- Ensure clarity in definitions: This should include clarity on the EoW final point and clarity
 on the distinction between product reuse in a system, EoW for preparation for re-use of
 products and EoW for secondary raw material after recycling.
- Guarantee compliance with EU product and chemical legislation: The output material can only cease to be waste if it complies with all EU chemicals and product legislation, including but not limited to REACH, CLP, POPs Regulation and ESPR. The same quality

²⁶ European Environmental Agency, *Investigating Europe's secondary raw material markets*, (2023).

standards should apply to both virgin and recycled materials, to ensure there is no additional risk when recycled materials enter the supply chain, and support trust in recycled materials and the long-term circular economy. Considering that (most) recycling processes do not ensure (full) decontamination and that testing of the output is costly, it is essential to ensure the high quality of the input by removing hazardous chemicals from the (virgin) material and product design stage and facilitating clean waste streams (including through separate collection and DRS).

- Uphold the waste hierarchy enshrined in EU law: EoW criteria should be set to prioritise
 re-use and preparation for re-use of products and materials over recycling and
 downcycling.
- **Input restriction and contamination:** To guarantee a high level of protection of human health and the environment in line with Article 6 of the WFD:
 - Certain inputs should not be eligible for EoW due to their hazardous nature, including materials listed under Basel Convention Annexes VIII and II and waste containing substances of very high concern.
 - Establishing positive lists of authorised inputs, an approach some Member States have used, should be considered.
 - A strict ≤ 0.5% contamination threshold for the presence of foreign materials should apply to the output.
- Prevent waste trade loopholes: Particular attention should be paid to ensure that
 end-of-waste criteria do not undermine the implementation of the EU's legal obligations
 under the Waste Shipment Regulation and the Basel Convention, notably by inadvertently
 facilitating misdeclarations and illegal shipments of waste as products. Clear, stringent
 and harmonised EoW criteria, along with strong traceability and enforcement, are
 necessary.
- Ensure traceability: Setting a traceability mechanism is essential to ensure information
 is available along the process from input to output, support trust in and uptake of the
 recycled material, and so enable a functioning toxic-free circular economy protecting
 health and the environment. Traceability mechanisms can build on existing ones (i.e.
 digital product passports as the ESPR is implemented), and the information should be
 made publicly available.
- Monitor and control: Control on compliance with EoW criteria is essential to ensure genuine circularity and protect human health and the environment. Controls on products and waste are currently too limited, and resources are insufficient. Self-monitoring has serious limitations and cannot be the sole control mechanism. Third-party certification and regular monitoring should be put in place.